skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zakaria, Camellia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The types of human activities occupants are engaged in within indoor spaces significantly contribute to the spread of airborne diseases through emitting aerosol particles. Today, ubiquitous computing technologies can inform users of common atmosphere pollutants for indoor air quality. However, they remain uninformed of the rate of aerosol generated directly from human respiratory activities, a fundamental parameter impacting the risk of airborne transmission. In this paper, we present AeroSense, a novel privacy-preserving approach using audio sensing to accurately predict the rate of aerosol generated from detecting the kinds of human respiratory activities and determining the loudness of these activities. Our system adopts a privacy-first as a key design choice; thus, it only extracts audio features that cannot be reconstructed into human audible signals using two omnidirectional microphone arrays. We employ a combination of binary classifiers using the Random Forest algorithm to detect simultaneous occurrences of activities with an average recall of 85%. It determines the level of all detected activities by estimating the distance between the microphone and the activity source. This level estimation technique yields an average of 7.74% error. Additionally, we developed a lightweight mask detection classifier to detect mask-wearing, which yields a recall score of 75%. These intermediary outputs are critical predictors needed for AeroSense to estimate the amounts of aerosol generated from an active human source. Our model to predict aerosol is a Random Forest regression model, which yields 2.34 MSE and 0.73 r2 value. We demonstrate the accuracy of AeroSense by validating our results in a cleanroom setup and using advanced microbiological technology. We present results on the efficacy of AeroSense in natural settings through controlled and in-the-wild experiments. The ability to estimate aerosol emissions from detected human activities is part of a more extensive indoor air system integration, which can capture the rate of aerosol dissipation and inform users of airborne transmission risks in real time. 
    more » « less
  2. Contact tracing is a well-established and effective approach for the containment of the spread of infectious diseases. While Bluetooth-based contact tracing method using phones has become popular recently, these approaches suffer from the need for a critical mass adoption to be effective. In this paper, we present WiFiTrace, a network-centric approach for contact tracing that relies on passive WiFi sensing with no client-side involvement. Our approach exploits WiFi network logs gathered by enterprise networks for performance and security monitoring, and utilizes them for reconstructing device trajectories for contact tracing. Our approach is specifically designed to enhance the efficacy of traditional methods, rather than to supplant them with new technology. We designed an efficient graph algorithm to scale our approach to large networks with tens of thousands of users. The graph-based approach outperforms an indexed PostgresSQL in memory by at least 4.5X without any index update overheads or blocking. We have implemented a full prototype of our system and deployed it on two large university campuses. We validated our approach and demonstrate its efficacy using case studies and detailed experiments using real-world WiFi datasets. 
    more » « less